BOLETÍN TÉCNICO MAYO 2020

CEDICAFÉ

Fertilización al suelo y foliar

un componente básico para mantener la productividad en las empresas cafetaleras

> Pedro Morales Luis Cordón Josué Girón Equipo de Investigadores

> > Sergio Morales Coordinador Nacional

Centro de Investigaciones en Café de Anacafé –Cedicafé– Edición y diagramación: Comunicación Anacafé Mayo, 2020

Introducción

Las adversidades de la vida deben de ser una fortaleza para reorientar el camino de las acciones, para ser creativos y para innovar y mejorar.

Dentro del proceso productivo del café, la fertilización es una de las partes más importantes, por su costo en la compra de insumos, como en el costo de la mano de obra. Además, una mala aplicación de fertilizante puede afectar la producción y la calidad del café.

Es importante realizar análisis de suelo y análisis foliar, para en base a ellos realizar un plan adecuado a los requerimientos de la plantación.

Tener en cuenta que la fertilización foliar no sustituye a la fertilización al suelo. Pues la primera se realiza para apoyar procesos fisiológicos específicos. Como por ejemplo el cuaje de la flor, llenado del fruto o mejorar la calidad. Y la segunda, la fertilización al suelo es para todo el proceso de desarrollo y completar los mismos procesos mencionados en la fertilización foliar.

En cada etapa las plantas demandan diferentes nutrientes y cantidades de cada uno, la época de la demanda depende del clima de la región cafetalera, ya que dependiendo de éste se darán las etapas fenológicas y así las necesidades del cultivo, la edad de la plantación y la producción estimada; todo esto es posible conocerlo a través de las curvas de variación estacional de los nutrientes (CVEN) del suelo y foliar, investigación que se ha desarrollado en el Centro de Investigaciones en Café –Cedicafé– de la

Asociación Nacional del Café –Anacafé– desde el año 2014, de las cuales han dado como resultado, las épocas adecuadas de muestreo de suelo y foliar y las épocas de fertilización con la distribución que se debe de realizar de cada uno de los nutrientes dependiendo el número de fertilizaciones que se realicen en el año.

Basado en los resultados de la curva de variación estacional de los nutrientes (CVEN) foliares, se estimaron los nutrientes a suplementar en las etapas fenológicas, para complementar la fertilización edáfica con aplicaciones foliares y los nutrientes estimados a reponer, los cuales normalmente se encuentran debajo del nivel mínimo en ese momento y que son necesarios para que las etapas fenológicas se desarrollen adecuadamente.

Época de muestreo de suelos y foliar

De los resultados de análisis de suelos y foliar mensual, generados en el laboratorio de suelos Analab, y con base en las curvas de variación estacional de cada nutriente elaboradas durante un año, se determinaron las épocas de muestreo, que indican la disponibilidad de los nutrientes a través del año, encontrando los picos más altos y bajos de cada uno de los elementos, tanto al suelo como foliar. Los picos altos en el suelo, se utilizan para encontrar las épocas de muestreo y ver si hay necesidad de suplementarlos en las épocas adecuadas ya definidas y los picos altos de foliar para determinar la época de muestreo y los bajos como etapas críticas, para suplementarlos vía foliar.

Determinación de las épocas de muestreo por región, basados en los resultados de la CVEN (Suelo y Foliar).

Cuadro 1 Épocas de muestreo de suelo para cada región, según CVEN (Suelo)

Región	Departamentos	Primer Muestreo	Segundo Muestreo
I	Quetzaltenango, San Marcos	diciembre-enero	mayo-junio
II	Suchitepéquez, Retalhuleu, Sololá	diciembre-enero	mayo-junio*
III	Escuintla, Chimaltenango, Sacatepéquez, Guatemala, Progreso	febrero-marzo	agosto- septiembre
IV	Santa Rosa, Jalapa, Jutiapa	diciembre-enero	junio-julio
V	Huehuetenango, Quiché	enero-febrero	julio-agosto
VI	Alta Verapaz, Baja Verapaz	abril-mayo	junio-julio*
VII	Zacapa, Chiquimula, Izabal, Petén	abril-mayo	junio-julio

^{*}Datos de referencia

Cuadro 2 Épocas de muestreo foliar para cada región, según CVEN (Foliar)

Región	Departamentos	Primer Muestreo	Segundo Muestreo
I	Quetzaltenango, San Marcos	enero-febrero	junio-julio
II	Suchitepéquez, Retalhuleu, Sololá	enero-febrero	junio-julio*
III	Escuintla, Chimaltenango, Sacatepéquez, Guatemala, Progreso	marzo-abril	agosto- septiembre
IV	Santa Rosa, Jalapa, Jutiapa	marzo-abril	julio-agosto
V	Huehuetenango, Quiché	enero-febrero	Julio-agosto
VI	Alta Verapaz, Baja Verapaz	abril-mayo	julio-agosto*
VII	Zacapa, Chiquimula, Izabal, Petén	abril-mayo	julio-agosto

^{*}Datos de referencia

Cuadro 3
Funciones de los nutrientes en las plantas y etapa de aplicación a nivel foliar
Primera aplicación: Prefloración donde se pueda, sino al secar la flor.
(Floración principal)

Etapa de aplicación	Elemento	Función	Aminoacido equivalente
	Eágfana	Promotor de floración y desarrollo del fruto.	
	Fósforo	Mecanismos de formación, crecimiento y multiplicación.	
		Formación de clorofila.]
	Azufre	Participa en los procesos de respiración y fotosíntesis.	
		Formación, viabilidad y fertilización del polen.	
		Lignificante celular.]
	Cobre	Productor de proteínas, aminoácidos y enzimas.	
	Cont	Promotor de la clorofila.]
Prefloración / Posfloración	Boro	Esencial en el metabolismo del nitrógeno.	Glisina, Lisina y Triptófano
r osnor acton		Tiene influencia directa en los procesos de multiplicación y crecimiento celular.	
		Importante en la viabilidad del polen y desarrollo de flores y frutos.	
		Contribuye a mantener el calcio en forma soluble dentro de la planta.	
		Requerido para la asimilación del nitrógeno.	
	Molibdeno	Importante en la formación del polen.	
		Requerido en cantidades muy pequeñas.	

Segunda aplicación foliar:

Se realiza 45 días después de secado de la flor

Etapa de aplicación	Elemento	Función	Aminoacido equivalente
Crecimiento	Magnesio	Forma parte de la clorofila. Participa en la fotosíntesis. Interviene en la formación de semillas. Necesario para el movimiento del fósforo dentro de la planta.	Ácido glutámico,
del fruto	Zinc	Favorece el crecimiento de los frutos y plantas.	ácido aspártico y glutamina.
		Responsable de reguladores de crecimiento de la planta tales como auxinas.	
		Favorece la absorción del fósforo.	
		Aumenta la tolerancia a enfermedades.	

Tercera aplicación:

105 días después de secada la flor

Etapa de aplicación	Elemento	Función	Aminoácido equivalente
Formación y llenado de fruto	Calcio	Importante como regulador de crecimiento de las plantas. Componente de la pared celular. Aumenta la capacidad de adaptación de la planta a condiciones adversas. Importante la vida de la hoja y fruto. Evita la purga del fruto. Aumenta la absorción del potasio.	Ácido glutámico y ácido aspártico
	Nitrógeno	Forma parte de a clorofila. Mejora la biomasa de la planta.	
	Fósforo	Participa en la producción, y transporte de azúcares, grasas y proteínas.	

Cuarta aplicación:

180 días después de secada la flor

Etapa de aplicación	Elemento	Función	Aminoácido equivalente
		Activador enzimático.	
		Presente en todos los tejidos vegetativos de la planta.	
		Bioestimulador del nitrógeno, contribuyendo a la fijación del nitrógeno atmosférico.	1
	Datasia	Regula el equilibrio de agua en las células,	
Maduración		manteniéndolas turgentes o hidratadas (sin flacidez o marchitez).	Metionina
del Fruto		Acelera la producción de azúcares y su transporte.	Wictionina
		Mejora la tolerancia de las plantas a heladas y sequías.	
		Mejora el color y calidad del grano.	
	Boro	Evita la acumulación de los ácidos clorogénicos.	
		Aumenta la movilidad de los azúcares.	
	Molibdeno	Activador enzimático.	

Resultados

De los resultados de análisis de suelos y foliar y en base a las curvas de variación de cada nutriente durante un año, se determinaron las épocas críticas de aplicaciones de nutrientes de manera edáfica (suelo) y foliar estableciéndolos de la manera siguiente:

Épocas, número de aplicaciones y distribución de los nutrientes.

Es indispensable en todo plan de fertilización, la consideración de las épocas efectivas para las aplicaciones de fertilizante de manera edáfica (al suelo), basado en esto, se establecen dos o más opciones para distribuir las fracciones en porcentaje de cada elemento por época, en función de aplicar dos o más veces los fertilizantes en el año, este comportamiento responde a la disponibilidad y eficiencia de absorción de los nutrientes por las plantas, obtenida por la curva de variación estacional de los nutrientes y las evaluaciones llevadas a cabo por Anacafé e INPOFOS, en diferentes regiones del país, como se muestra en los siguientes cuadros:

Cuadro 4 Épocas de fertilización para producciones inferiores a 120 quintales cereza por manzana.

Región	Primera fertilización	Segunda fertilización
	mayo-junio	agosto-septiembre
II	mayo-junio	agosto-septiembre
III	mayo-junio	agosto-septiembre
IV	mayo-junio	agosto-septiembre
V	Junio-julio	agosto-septiembre
VI	Junio-julio	Septiembre-octubre
VII	Junio-julio	Septiembre-octubre

Cuadro 5 Opciones de fertilización para producciones inferiores a 120 quintales cereza por manzana.

Opción	Primera fertilización	Segunda Fertilización	
	60% del nitrógeno	40% del nitrógeno	
# 1	60% del fósforo	40% del fosforo	
	40% del potasio	60% del potasio	
	60% del nitrógeno	40% del nitrógeno	
# 2	100% del fósforo		
		100% del potasio	
	60% del nitrógeno	40% del nitrógeno	
# 3		100% del fósforo	
		100% del potasio	

Cuadro 6 Épocas de fertilización para producciones superiores a 120 quintales cereza por manzana.

Región	Primera fertilización	Segunda Fertilización	Tercera fertilización
	mayo-junio	agosto-septiembre	octubre-noviembre
II	mayo-junio	agosto-septiembre	octubre-noviembre
III	mayo-junio	agosto-septiembre	octubre-noviembre
IV	mayo-junio	agosto-septiembre	octubre-noviembre
V	junio-julio	agosto-septiembre	octubre-noviembre
VI	junio-julio	septiembre-octubre	noviembre-diciembre
VII	junio-julio	septiembre-octubre	noviembre-diciembre

Cuadro 7 Opciones de fertilización para producciones superiores a 120 quintales cereza por manzana.

Opción	Primera fertilización	Segunda fertilización	Tercera Fertilización
	40% del nitrógeno	30% del nitrógeno	30% del nitrógeno
1	60% del fósforo	40% del fósforo	
	20% del potasio	40% del potasio	40% del potasio
	40% del nitrógeno	30% del nitrógeno	30% del nitrógeno
2	60% del fósforo	40% del fósforo	
	40% del potasio	40% del potasio	20% del potasio
	40% del nitrógeno	30% del nitrógeno	30% del nitrógeno
3	60% del fósforo	40% del fósforo	
		50% del potasio	50% del potasio
4	60% del nitrógeno 100% del fósforo		40% del nitrógeno
		100% del potasio	
5	60% del nitrógeno	40% del nitrógeno	
	100% del fósforo		
		50% del potasio	50% del potasio

Cuadro 8 Épocas de fertilización para producciones altas en microclimas de las regiones VI y VII (Alta Verapaz, Chiquimula y Zacapa)

Región	Primera fertilización	Segunda fertilización	Tercera fertilización	Cuarta fertilización
VI v VII	mayo-junio	agosto-	octubre-	diciembre-
VI Y VII	mayo-junio	septiembre	noviembre	enero

Cuadro 9 Opciones de fertilización para producciones altas en microclimas de las regiones VI y VII (Alta Verapaz, Chiquimula y Zacapa)

Onción	Primera	Segunda	Tercera	Cuarta
Opción	Fertilización	Fertilización	Fertilización	Fertilización
	30% Nitrógeno	30% Nitrógeno	20% Nitrógeno	20% Nitrógeno
1	50% Fósforo	50% Fósforo		
	30% Potasio	35% Potasio	35% Potasio	
	30% Nitrógeno	30 % Nitrógeno	20 % Nitrógeno	20% Nitrógeno
2	50% Fósforo	50% Fósforo		
	20% Potasio	20% Potasio	30 % Potasio	30 % Potasio
Cedicafé - Asistencia Técnica (consensuado)				

Si resultan elementos menores deficientes en el suelo, según su contenido, agregarlos en una o en dos épocas en la fórmula de fertilizante al suelo de la siguiente forma:

Cuadro 10
Recomendación de % de suplemento de elementos menores en las fórmulas de fertilización al suelo.

Nutriente Puro	% de fuente en la fórmula
Boro	0.1
Zinc	0.2
Hiero	0.3
Manganeso	0.1
Cobre	0.05

Es importante tomar en consideración, que, a través de la determinación de las curvas de variación estacional de los nutrientes, se determinan épocas de muestreo y de aplicación de nutrientes. Con la Ley de Rendimientos Decrecientes, estudios complementarios realizados por Anacafé e INPOFOS y los resultados de las investigaciones de los diferentes Centros de Investigación de los países productores de todo el mundo, Girón (2106), ha establecido una recomendación de las demandas nutricionales que presenta el cultivo para Guatemala, partiendo de una base de productividad de 100 qq cereza (45.28 Kg), los cuales se presentan a continuación:

Cuadro 11 Requerimientos nutricionales en libras por manzana según producción de 100 quintales de café cereza / manzana.

Elemento	Libras por manzana		
Nitrógeno (N)	175 – 250		
Fósforo (P)	17		
Potasio K)	140		
Calcio (Ca)	60		
Magnesio Mg)	30		
Azufre (S)	20		
Boro (B)	0.31		
Zinc (Zn)	0.77		
Cobre (Cu)	0.55		
Hierro (Fe)	3.08		
Manganeso	1.15		

Cuadro 12 Requerimientos de NPK según los niveles de producción Tomado de la Guía Técnica Anacafé (2018).

	Menor 75	5	de 75 a 100		de 100 a 150			
q	q/manzaı	na	qq/manzana		qq/manzana			
Re	querimie	nto	Requerimiento		Requerimiento			
libr	as/manz	ana	libras/manzana		libras/manzana			
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	KO
100	25	75	175	40	140	250	60	200
de 150 a 200		de	de 200 a 250		de 250 a 300			
q	q/manzai	na	qq/manzana		qq/manzana			
Red	querimie	nto	o Requerimiento		nto	Requerimiento		
libr	as/manz	ana	libras/manzana		libras/manzana			
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	KO
325	80	260	400	100	320	475	120	380
	> 300							
q	q/manzai	na						
Requerimiento								
libras/manzana								
N	P ₂ O ₅	K ₂ O						
550	140	440						

Los suplementos foliares se realizan si se cumple uno de los siguientes requisitos:

- > Que el análisis de suelo reporte deficiencia en los dos muestreos anuales.
- > Que el análisis foliar confirme su deficiencia, con síntomas visibles en las hojas.
- > Por antagonismos entre nutrientes.
- > En épocas críticas determinadas por la CVENF

Después de una enmienda con materiales alcalinizantes, aparecerán deficiencias de hierro y manganeso. Se recomienda la corrección con quelato de hierro y/o manganeso, si los síntomas de deficiencia son muy marcados (clorosis en las hojas de las plantas) debido a que interfieren con el proceso fotosintético de las plantas. Estas deficiencias generalmente son transitorias.

Etapa fenológica, elementos foliares y dosis a utilizar

Como parte del trabajo realizado por Cedicafé, al momento de realizar los planes de fertilización al suelo, de forma complementaria, se debe trabajar en los planes de fertilización foliar. Las aplicaciones foliares contribuyen a enmendar deficiencias en momentos precisos o críticos para las plantas y, en muchos casos, a aumentar la calidad a nivel de taza.

Existen dos tipos de planes de fertilización foliar (Girón J. López E. y Jiménez H). Del año 2000 al 2009, se elaboró un plan de aplicaciones dividido en cuatro etapas relacionadas al momento de floración principal, este se distribuye de la siguiente forma:

Cuadro 13: Plan básico de fertilización foliar para el cultivo del café

Etapa	Elemento		Dosis / mz
	Boro/Sulfato	de	1 litro/350
Prefloración / Post floración	cobre		gramos
45 días después de la floración	Zinc		1 litro
105 días después de la floración	Calcio		1 litro
150-210 días después de la			
floración	Potasio		1 litro

Con la elaboración de las curvas de variación estacional de los nutrientes foliares (CVENF) y a las validaciones llevadas a cabo en campo, se determinaron otros elementos esenciales en las etapas de floración, crecimiento, llenado y maduración del fruto, denominado Plan de Fertilización Foliar Avanzado para las unidades productivas con producciones medias y altas (ver cuadro 13).

Cuadro 14
Programa de fertilización foliar elaborado a partir de las CVENF

Etapa de aplicación	Elemento	Dosis / mz
Prefloración/ Post floración	Fósforo	1 lt (líquido)/0.5 kg (como sal)
	Azufre	0.350 kg sulfato de cobre
	Cobre	(suplementa azufre y cobre).
	Boro	1 lt, boro-molibdeno
	Molibdeno	(suplementa boro y molibdeno).
45 días después de la floración	Magnesio	1 lt, Zn-Mg (suplementa cinc y
(Crecimiento del fruto)	Zinc	magnesio).
105 días después de la fleración	Calcio	1 lt (líquido)
105 días después de la floración	Nitrógeno	1 It (líquido)
Llenado de fruto	Fósforo	1 lt (líquido)/0.5 kg (como sal)
150-210 días después de la	Potasio	1 lt (líquido)/0.5 kg (como sal)
floración	1 010310	i ii (iiqoido)/o.3 kg (corrio sai)
Maduración del fruto	Molibdeno	1 lt (líquido)/25 gr (como sal)

Existen actualmente productos que contienen todos los elementos requeridos. Dosis en producto líquido (It=litro) o sólido (sal en Kg=Kilogramo), utilizar solamente uno de los dos.

En cuanto a la aplicación foliar de los elementos; según la curva de variación estacional de los nutrientes, se elaboró el programa agrupando los demandados por la planta en un momento crítico; dicho **Programa de fertilización foliar elaborado a partir de las CVENF (cuadro 14).**

Según las fuentes de elementos que se utilice, es necesario tomar estas consideraciones:

- 1. Medir el pH para evitar que se dé una precipitación de la mezcla.
- 2. Usar elementos quelatados o acomplejados buscando mejorar la absorción.
- 3. Si las fuentes son sales, se puede agregar un aminoácido que, en su fuente, posea mayor concentración de lisina y glicina para aumentar su eficiencia.
- 4. Es necesario considerar que la ausencia de estos elementos daría como efecto el cumplimiento de la ley del mínimo, donde se explica que la producción estará dada en base al elemento en menor concentración dentro de la planta.

- 5. Al momento de la aplicación de prefloración, es recomendable utilizar sulfato de cobre y no quelato natural de cobre, ya que, en validaciones realizadas, este se mantiene a bajo en producción con respecto al sulfato de cobre
- 6. Es importante que cada empresa cafetalera (unidad productiva), pueda contar con su análisis foliar para poder evaluar su plan de aplicación de fertilizantes foliares.
- 7. En base a sus resultados de análisis foliares, consulte al técnico de Anacafé para su debida interpretación.

Las plantas de café para su desarrollo y producción requieren de una serie de necesidades nutricionales que sean suplidas, esto implica que los elementos nutricionales deben de estar disponibles oportunamente a cantidades adecuadas y balanceadas.

Bibliografía

- Anacafé (2018). Guía Técnica de Caficultura. Guatemala: Asociación nacional del café Guatemala. 312p.
- Anacafé (2017). Ley de rendimientos decrecientes, centro de investigaciones en café Guatemala: Asociación nacional del café Guatemala.
- Girón, J. (2016). Manual Química de suelos Aplicada al Cultivo del Café y Manual de la Curva de Variación Estacional de Nutrientes. Asociación Nacional del Café. Centro de Investigaciones en Café. Guatemala. 31p.
- Desarrollos Químicos, S.A., DEQUISA., insumos foliares plan básico.
- Laboratorios PENTA, S.A., insumos foliares plan CVENF.
- Moving With Agriculture., MANVERT., insumos foliares plan CVENF.

Más información:

Centro de Investigaciones en Café - Cedicafé - Anacafé 2421-3700 ext. 3009 cedicafe.anacafe.org